

Multiple Phase Flow

Burhan S Abdulrazak, Ph.D. Chemical Engineering Department

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Lecture Notes: Separated Flow Model

Introduction

The **separated flow model** is a multiphase flow model that assumes the phases (e.g., gas and liquid) are distinct and flow separately with individual velocities. Unlike the homogeneous flow model, which treats all phases as a single effective fluid, the separated flow model considers the slip between phases, making it more accurate for systems where phase interaction and separation are significant.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Key Assumptions

Distinct Phases:

• The phases (e.g., gas and liquid) maintain distinct identities and flow separately.

Slip Between Phases:

• The gas and liquid phases can have different velocities, defined by the **slip** ratio (S):

$$S = \frac{u_g}{u_l}$$

.

Where ug and ul are the gas and liquid velocities, respectively.

Steady-State Flow:

• The model typically assumes that the flow is steady and time-independent.

One-Dimensional Flow:

The analysis is conducted along the pipe's axial direction.

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Governing Equations

The separated flow model uses conservation equations for each phase, which are coupled through interphase interactions. These include:

1. Mass Conservation

For each phase (k = g for gas, 1 for liquid):

$$rac{\partial}{\partial t}(lpha_k
ho_k)+
abla\cdot(lpha_k
ho_k\mathbf{u}_k)=0$$

Where:

- αk : Volume fraction of phase k
- pk: Density of phase k
- uk: Velocity of phase k

2. Momentum Conservation

For each phase:

$$rac{\partial}{\partial t}(lpha_k
ho_k\mathbf{u}_k)+
abla\cdot(lpha_k
ho_k\mathbf{u}_k\mathbf{u}_k)=lpha_k\mathbf{F}_k-
abla p$$

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Where:

• Fk: Force acting on phase k (gravity, friction, interphase drag)

3. Energy Conservation

For each phase:

$$rac{\partial}{\partial t}(lpha_k
ho_k e_k) +
abla \cdot (lpha_k
ho_k e_k \mathbf{u}_k) = lpha_k q_k + \mathbf{w}_k$$

Where:

- ek: Specific energy of phase k
- qk: Heat transfer
- wk: Work done on the phase

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Key Parameters

Slip Ratio (S):

- Measures the velocity difference between phases.
- A higher slip ratio indicates significant phase separation.

Volume Fraction (ak):

• The fraction of the pipe's volume occupied by each phase.

Flow Quality (x):

• The mass fraction of the gas phase in the total flow:

$$x=rac{\dot{m}_g}{\dot{m}_g+\dot{m}_l}$$

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

4- Mass Flux (G):

• The total mass flow rate per unit area:

$$G = \frac{\dot{m}_g + \dot{m}_l}{A}$$

5- Void Fraction (αg):

• The fraction of the cross-sectional area occupied by the gas phase.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Applications

Oil and Gas Pipelines:

• Predicts phase separation and slip in multiphase pipelines.

Nuclear Reactor Coolant Systems:

• Models gas-liquid flows in cooling channels of boiling water reactors.

Heat Exchangers:

• Analyzes phase behavior in condensers and evaporators.

Chemical Process Engineering:

• Used in distillation columns and two-phase separators.

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Advantages

Realistic Assumptions:

 Accounts for phase slip, improving accuracy in systems with significant phase separation.

Broad Applicability:

• Can model a wide range of flow regimes (e.g., stratified, annular).

Enhanced Prediction:

 Provides more detailed insights into flow properties (e.g., pressure drop, phase velocities).

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

من المعالم المعالم

Limitations

Complexity:

 Requires solving separate equations for each phase, increasing computational effort.

Empirical Correlations:

• Often relies on experimental data for slip ratio and interphase forces.

Limited to Two Phases:

 Extending the model to three or more phases adds significant complexity.

كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Example Calculation: Separated Flow Model

Problem: A gas-liquid mixture flows through a horizontal pipe with the following properties:

- Gas volume fraction $(\alpha g) = 0.4$
- Gas density $(\rho g) = 2 \text{ kg/m}^3$
- Liquid density (ρl) = 1000 kg/m³
- Slip ratio $(S = \frac{u_g}{u_l}) = 2$
- Total mass flow rate (m^{\cdot}) = 50 kg/s
- Pipe diameter (D=0.1 m).

Find:

Mixture density (ρ_m).

Mixture velocity (u_m).

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Solution

Mixture Density: The mixture density is given by:

$$\rho_{\rm m} = \alpha_{\rm g} \rho_{\rm g} + (1 - \alpha_{\rm g}) \rho_{\rm l}$$

Substituting the values:

$$\rho_{\rm m} = (0.4)(2) + (1 - 0.4)(1000)$$

 $\rho_{\rm m} = 0.8 + 600 = 600.8 \, \text{kg/m}^3$

Mixture Velocity: The slip velocity relationship allows us to determine the individual phase velocities:

$$u_g = S \cdot u_l$$

The total mass flow rate is:

 $\dot{m} = \rho_g \, u_g \, A_g \, + \rho_l \, u_l \, A_l$

Where:

 $\circ A_{g} = \alpha_{g} A$

 $A_l = (1 - \alpha_g) A$

Substitute the known values and solve for u_l and u_g :

$$\circ \quad A = \frac{\pi D^2}{4} = 0.00785 \, m^2$$

COLLEGE OF ENGINEERING - کلبه الهندسه Simplify to get $u_m = \frac{m}{\rho_m A}$. Tikrit University - جامعة تكريت

Conclusion

The **separated flow model** is a powerful tool for analyzing multiphase flows with significant phase separation. By incorporating slip between phases, it provides a more realistic representation of real-world systems compared to simpler models like the homogeneous flow model. However, its complexity and reliance on empirical correlations necessitate careful application.

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University